Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.482
Filtrar
1.
Neuromodulation ; 27(2): 284-294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37191611

RESUMO

OBJECTIVES: The aims of this study were to investigate analgesic effects of vagus nerve stimulation (VNS) on visceral hypersensitivity (VH) in a rodent model of functional dyspepsia (FD) and to compare invasive VNS with noninvasive auricular VNS (aVNS). MATERIALS AND METHODS: Eighteen ten-day-old male rats were gavaged with 0.1% iodoacetamide (IA) or 2% sucrose solution for six days. After eight weeks, IA-treated rats were implanted with electrodes for VNS or aVNS (n = 6 per group). Different parameters, varying in frequency and stimulation duty cycle, were tested to find the best parameter based on the improvement of VH assessed by electromyogram (EMG) during gastric distension. RESULTS: Compared with sucrose-treated rats, visceral sensitivity was increased significantly in IA-treated "FD" rats and ameliorated remarkably by VNS (at 40, 60, and 80 mm Hg; p ≤ 0.02, respectively) and aVNS (at 60 and 80 mm Hg; p ≤ 0.05, respectively) with the parameter of 100 Hz and 20% duty cycle. There was no significant difference in area under the curve of EMG responses between VNS and aVNS (at 60 and 80 mm Hg, both p > 0.05). Spectral analysis of heart rate variability revealed a significant enhancement in vagal efferent activity while applying VNS/aVNS compared with sham stimulation (p < 0.01). In the presence of atropine, no significant differences were noted in EMG after VNS/aVNS. Naloxone blocked the analgesic effects of VNS/aVNS. CONCLUSIONS: VNS/aVNS with optimized parameter elicits ameliorative effects on VH, mediated by autonomic and opioid mechanisms. aVNS is as effective as direct VNS and has great potential for treating visceral pain in patients with FD.


Assuntos
Dispepsia , Estimulação do Nervo Vago , Humanos , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Estimulação do Nervo Vago/métodos , Dispepsia/terapia , Nervo Vago , Iodoacetamida , Analgésicos , Sacarose
2.
Int J Biol Macromol ; 258(Pt 1): 128797, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104687

RESUMO

Using an active targeting approach of chemotherapeutics-loaded nanocarriers (NCs) with monoclonal antibodies is a potential strategy to improve the specificity of the delivery systems and reduce adverse reactions of chemotherapeutic drugs. Specific targeting of the human epidermal growth factor receptor-2 (HER-2), expressed excessively in HER-2-positive breast cancer cells, can be achieved by conjugating NCs with an anti-HER-2 monoclonal antibody. We constructed trastuzumab-conjugated chitosan iodoacetamide-coated NCs containing doxorubicin (Tras-Dox-CHI-IA-NCs) as a tumor-targeted drug delivery system, during the study. Chitosan-iodoacetamide (CHI-IA) was synthesized and utilized to prepare trastuzumab-conjugated NCs (Tras-NCs). The morphology, physicochemical properties, drug loading, drug release, and biological activities of the NCs were elucidated. The Tras-NCs were spherical, with a particle size of approximately 76 nm, and had a positive zeta potential; after incorporating the drug, the size of the Tras-NC increased. A prolonged, 24-h drug release from the NCs was achieved. The Tras-NCs exhibited high cellular accumulation and significantly higher antitumor activity against HER-2-positive breast cancer cells than the unconjugated NCs and the drug solution. Therefore, Tras-Dox-CHI-IA-NCs could be a promising nanocarrier for HER-2-positive breast cancer.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas , Humanos , Feminino , Quitosana/química , Iodoacetamida , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Trastuzumab , Anticorpos Monoclonais/química , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias da Mama/tratamento farmacológico
3.
Se Pu ; 41(10): 921-928, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37875414

RESUMO

Phospholipids are important signaling molecules, and their metabolism is closely related to various diseases, such as neurodegenerative diseases and cancers. Phospholipids are typically characterized with extreme complexity and structural diversity. For example, phospholipids present in many different forms, such as sn position isomers, double-bond position isomers, double-bond stereochemical isomers, and enantiomers. Therefore, further research on novel separation and analytical techniques for phospholipids is of great importance. As an amphiphilic alternating copolymer, styrene-maleic anhydride copolymer (SMA) can be inserted into the phospholipid bilayer of biofilms to form lipid nanodisks with membrane proteins as the centers, thereby solubilizing membrane proteins and phospholipids. Thus, the introduction of SMA into a chromatographic stationary phase can potentially improve the separation and analysis of phospholipids. In this paper, SMA was successfully grafted onto the surface of silica gel via the "click" reaction and free radical polymerization. After further ring-opening modification of SMA with methyl methionine hydrochloride (MME·HCl), a novel SMA-modified stationary phase material (Sil-SMA-MME) was fabricated. The Sil-SMA-MME stationary phase was characterized using thermogravimetric analysis and Fourier transform infrared spectroscopy (FT-IR), and the results indicated the successful fabrication of the target material. The retention mechanism of the packed Sil-SMA-MME chromatographic column was investigated using hydrophilic nucleosides and nucleic acid bases via high performance liquid chromatography (HPLC) and UV detection. According to the retention characteristics of the nucleosides and nucleic acid bases in different mobile phases, the Sil-SMA-MME chromatographic column exhibited a typical hydrophilic-interaction-based retention mechanism, similar to that of a commercially available amino (SiO2-NH2) column. The separation performance of the Sil-SMA-MME column was evaluated using three types of small-molecule substances, including amides, nucleoside/nucleic acid bases, and phenols. Cyanoacetamide, 2-iodoacetamide, benzamide, p-aminobenzamide, and nicotinamide were used to evaluate the chromatographic performance of the developed Sil-SMA-MME column. When acetonitrile-H2O (96∶4, v/v) was used as the mobile phase, the five compounds exhibited good peak shapes and could be baseline-separated within 8 min. The highest column efficiency achieved was 90900 N/m. By contrast, under the same chromatographic conditions, the test substances were not separated effectively on the SiO2-NH2 column. Regardless of the mobile phase ratio, the peaks of benzamide and 2-iodoacetamide overlapped. These results demonstrate that the developed Sil-SMA-MME column has good separation selectivity. The separation performance of the Sil-SMA-MME column for phospholipid samples was also investigated by HPLC and evaporative light scattering detection (ELSD) to explore its feasibility for phospholipid separation and analysis. Different phospholipid standards were used to evaluate the separation performance of the column. Under certain mobile phase conditions, baseline separation could be achieved for dipalmityl phosphatidyl serine sodium (DPPS), diolyl phosphatidyl choline (DOPC), and dipalmityl phosphatidyl ethanolamine (DPPE), as well as four phosphatidyl choline (PC) standards, namely, lysophosphatidylcholine (LysoPC), dimyristoyl phosphatidyl choline (DMPC), distearyl phosphatidyl choline (DSPC), and dipalmitoyl phosphatidyl choline (DPPC). The separation potential of the developed Sil-SMA-MME column was further evaluated by separating and analyzing phospholipid extracts from Antarctic krill oil and human serum. The results showed that the developed Sil-SMA-MME column has good potential for phospholipid separation and analysis.


Assuntos
Ácidos Nucleicos , Fosfolipídeos , Humanos , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Iodoacetamida , Fosfatidilcolinas , Benzamidas , Proteínas de Membrana , Interações Hidrofóbicas e Hidrofílicas
4.
J Chromatogr A ; 1708: 464349, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696129

RESUMO

Enantioselective amino acid analysis is gaining increasing importance in pharmaceutical, biomedical and food sciences. While there are many methods available for enantiomer separation of amino acids, the simultaneous analysis of all chiral proteinogenic amino acids by a single method with one column and a single condition is still challenging. Herein, we report an enantioselective high-performance liquid chromatography-tandem mass spectrometry (LC-MS) assay using Chiralpak QN-AX as chiral column. With 6-aminoquinolyl-N-hydrosysuccinimidyl carbamate (AQC) as derivatization reagent, efficient enantioselective separation of D- and L-amino acids using HPLC has become possible. Thiol-containing amino acids like Cys are alkylated prior to AQC-labelling. A protocol for automated sample preparation including both derivatization step and calibrator preparation is presented. For compensating matrix effects, u-13C15N-labelled internal standards (IS) were employed. The method was validated and applied to the enantioselective analysis of amino acids in a bacterial fermentation broth.


Assuntos
Aminoácidos , Espectrometria de Massas em Tandem , Iodoacetamida , Estereoisomerismo , Cromatografia Líquida , Carbamatos
5.
J Agric Food Chem ; 71(34): 12875-12882, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37584212

RESUMO

Quantifying sulforaphane (SFN) and its thiol metabolites in biological samples using liquid chromatography-tandem mass spectrometry is complicated by SFN's electrophilic nature and the facile dissociation of SFN-thiol conjugates. SFN can be lost during sample preparation due to conjugation with protein thiols, which are precipitated and discarded. We observe that only 32 ± 3% of SFN is recovered 2 h after spiking into fetal bovine serum. The SFN-glutathione conjugate prepared at 10 mM in 0.1% formic acid in water (pH 3) dissociated by approximately 95% to free SFN, highlighting the difficulty in preparing thiol metabolite standards. We used the alkylating agent iodoacetamide (IAA) to both release SFN from protein thiols and force the dissociation of SFN metabolites. This thiol-blocking method increased SFN percent recovery from serum from 32 to 94 ± 5%, with a 4.7 nM method limit of quantitation. Applying the method to clinical samples, SFN concentrations were on average 6 times greater than when IAA was omitted. The IAA thiol-blocking method streamlines the analysis of bioavailable SFN in plasma samples.


Assuntos
Compostos de Sulfidrila , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Isotiocianatos , Sulfóxidos , Iodoacetamida
6.
J Inorg Biochem ; 246: 112264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290360

RESUMO

A beta-semihemoglobin is an alpha-beta dimer of hemoglobin (Hb) in which the beta-subunit carries heme, while the alpha-subunit is heme-less, in apo form. It is characterised by displaying a high affinity for oxygen, and absence of cooperative binding of oxygen. We have modified chemically the residue beta112Cys (G14), located adjacent to the alpha1beta1 interface, and studied the impact of such a modification on the oligomeric state and oxygenation properties of the derivatives. We also studied the impact of modifying beta93Cys (F9) since its modification was unavoidable. For this, we used N-Ethyl maleimide and iodoacetamide. For the alkylation of beta112Cys (G14) in isolated subunits, we used N-Ethyl maleimide, iodoacetamide, or additionally, 4,4'-Dithiopyridine. Seven native and chemically modified beta-subunit derivatives were prepared and analysed. Only those derivatives treated with iodoacetamide showed oxygenation properties that were indistinguishable from those of native beta-subunits. These derivatives were then converted into their respective semihemoglobin forms, and four additional derivatives were prepared and analysed .in terms of ligation-linked oligomeric state, and oxygenation function, and contrasted against native Hb and unmodified beta-subunits. Strikingly, beta-semiHbs with modifications in beta112Cys showed indications of cooperative oxygen binding in various degrees, which suggested the possibility of assembly of two beta-semiHbs. The derivative modified with 4-Thiopyridine in beta112Cys showed a highly cooperative binding of oxygen (nmax = 1.67). A plausible allosteric scheme that could explain allostery in beta-semiHb system is suggested.


Assuntos
Heme , Hemoglobinas , Iodoacetamida , Hemoglobinas/química , Heme/química , Maleimidas , Oxigênio/química , Conformação Proteica
8.
Comb Chem High Throughput Screen ; 26(7): 1424-1436, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36043772

RESUMO

AIM: The aim of the study was to explore the efficacy as well as the mechanism of action of Pitongshu (PTS) on rats with functional dyspepsia (FD) induced by iodoacetamide gavage and tail clamping. METHODS: The bioactive components of PTS were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), whereas the potential targets of PTS were obtained from the Similarity Ensemble Approach (SEA), TCMSP, and Swiss Target Prediction Database. The disease targets were obtained from the DisGeNET database, whereas Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using the R Software. The method of iodoacetamide gavage combined with tail clamping was used to establish the FD rat model in this study. Body weight, food intake, gastrointestinal motility, gastric acidity and secretion, and the mechanical pain threshold of rats were measured. The open-field test was also performed. The stomach and duodenum were histologically observed. The levels of serotonin (5-HT), Calcitonin Gene-Related Peptide (CGRP), Motilin (MTL), and Gastrin (GAS) in gastric tissues were detected by ELISA. RESULTS: A total of 139 bioactive components and 17 potential targets of PTS were identified through a network pharmacology approach. The results of GO and KEGG enrichment analyses indicated that PTS could reduce the 5-HT secretion of gastric tissues through the serotonergic synaptic pathway and alleviate the symptoms of FD, indicating that PTS plays a therapeutic role. The results of animal experiments showed that PTS could increase body weight and food intake, improve autonomous activity, and decrease gastric acidity and secretion in FD rats. Furthermore, gastric sensitivity increased in FD rats, and PTS treatment could significantly decrease it. The results of ELISA showed that the overexpression of 5-HT and CGRP was decreased after PTS treatment in FD rats. Lastly, PTS could significantly improve gastrointestinal motility, as well as the levels of GAS and MTL in FD rats. CONCLUSION: PTS may reduce 5-HT secretion by regulating the serotonergic synaptic pathway, thereby reducing visceral sensitivity and alleviating the symptoms of FD.


Assuntos
Dispepsia , Ratos , Animais , Dispepsia/tratamento farmacológico , Serotonina , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Iodoacetamida/uso terapêutico , Motilidade Gastrointestinal/fisiologia
9.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296716

RESUMO

Protein misfolding and aggregation play a significant role in several neurodegenerative diseases. In the present work, the spontaneous aggregation of hen egg-white lysozyme (HEWL) in an alkaline pH 12.2 at an ambient temperature was studied to obtain molecular insights. The time-dependent changes in spectral peaks indicated the formation of ß sheets and their effects on the backbone and amino acids during the aggregation process. Introducing iodoacetamide revealed the crucial role of intermolecular disulphide bonds amidst monomers in the aggregation process. These findings were corroborated by Molecular Dynamics (MD) simulations and protein-docking studies. MD simulations helped establish and visualize the unfolding of the proteins when exposed to an alkaline pH. Protein docking revealed a preferential dimer formation between the HEWL monomers at pH 12.2 compared with the neutral pH. The combination of Raman spectroscopy and MD simulations is a powerful tool to study protein aggregation mechanisms.


Assuntos
Simulação de Dinâmica Molecular , Muramidase , Animais , Muramidase/química , Agregados Proteicos , Análise Espectral Raman , Iodoacetamida , Proteínas , Aminoácidos , Dissulfetos , Galinhas/metabolismo
10.
MAbs ; 14(1): 2133674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36224723

RESUMO

Therapeutic monoclonal antibodies (mAbs) have a propensity to host a large number of chemical and enzymatical modifications that need to be properly assessed for their potential impact on target binding. Traditional strategies of assessing the criticality of these attributes often involve a laborious and low-throughput variant enrichment step prior to binding affinity measurement. Here, we developed a novel competitive binding-based enrichment strategy followed by mass spectrometry analysis (namely, competitive binding-MS) to achieve high-throughput evaluation of potential critical quality attributes in therapeutic mAbs. Leveraging the differences in target binding capability under competitive binding conditions, the criticality of multiple mAb attributes can be simultaneously evaluated by quantitative mass spectrometry analysis. The utility of this new workflow was demonstrated in three mAb case studies, where different post-translational modifications occurring within the complementarity-determining regions were successfully interrogated for their impact on antigen binding. As this workflow does not require prior enrichment (e.g., by forced degradation or liquid chromatography fractionation) of the variants, it is particularly valuable during the mAb candidate developability assessment, where fast turn-around time is highly desired to assist candidate selection.Abbreviations: ACN: acetonitrile; ADCC: antibody-dependent cell-mediated cytotoxicity; AEX: anion exchange chromatography; bsAb: bispecific antibody; CDC: complement-dependent cytotoxicity; CDR: complementarity-determining region; CML: carboxymethylation; CQA: critical quality attribute; DDA: data-dependent acquisition; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; FA: formic acid; Fab: Fragment antigen-binding; FcRn: neonatal Fc receptor; HC: heavy chain; HIC: hydrophobic interaction chromatography; IAA: iodoacetamide; IEX: ion exchange chromatography; LC: light chain; mAb monoclonal antibody; msAb: monospecific antibody; MS: mass spectrometry; PBS: phosphate-buffered saline; pI: isoelectric point; PTM: post-translational modification; SCX: strong cation exchange chromatography; SEC: size exclusion chromatography; SPR: surface plasmon resonance; XIC: extracted ion chromatography.


Assuntos
Anticorpos Monoclonais , Antineoplásicos Imunológicos , Acetonitrilas , Anticorpos Monoclonais/química , Ligação Competitiva , Cátions , Regiões Determinantes de Complementaridade/química , Dimetil Sulfóxido , Ditiotreitol , Iodoacetamida , Espectrometria de Massas/métodos , Fosfatos
11.
ChemMedChem ; 17(18): e202200292, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35851832

RESUMO

Oxidative stress contributes to the pathogenesis of various neurodegenerative diseases and induction of the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is a validated neuroprotective strategy. Synthetically-derived samples of members of the ribisin class of natural product together with a range of analogues were evaluated for their neuroprotective capacities. Four of the twenty-four compounds tested were found to strongly stimulate antioxidant response element-dependent transcriptional activity in human-derived SH-SY5Y cells. Further, in rat pheochromocytoma PC12 cells and mouse brain cortical cultures these compounds upregulated levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target gene products, namely heme oxygenase (HO-1) and NAD(P)H quinone reductase 1 (NQO1). Functionally speaking, the compounds conferred protection in these cell models challenged with H2 O2 . In silico molecular modeling suggests that certain of the ribisins can dock in the Nrf2-binding Kelch domain in Keap1, while cysteine labeling by biotinylated iodoacetamide suggest that cysteine residues within Keap1 react with the ribisins. It is thus proposed that the most active compounds exert their neuroprotective activities by targeting Keap1, thereby activating Nrf2 and so increasing transactivation of Nrf2-responsive genes that encode for detoxifying and antioxidant enzymes.


Assuntos
Produtos Biológicos , Neuroblastoma , Fármacos Neuroprotetores , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Produtos Biológicos/farmacologia , Cisteína/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Iodoacetamida/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , NAD , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos
12.
Anticancer Agents Med Chem ; 22(18): 3163-3171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692152

RESUMO

BACKGROUND: Calotropis procera is a laticiferous plant (Apocynaceae) found in tropical regions all over the world. The ultrastructural characteristics of laticifers, their restricted distribution among different taxonomic groups, and in some species in each clade, as peptidases from latex, make them very attractive for biological analysis. OBJECTIVE: The study aims to investigate the effects of LP-PII-IAA (laticifer protein (LP) sub-fraction II (PII) of C. procera presenting an iodoacetamide-inhibited cysteine proteinase activity) on irinotecan-induced intestinal mucositis, a serious adverse effect of this medicine for the treatment of cancer. METHODS: LP-PII-IAA is composed of closely related isoforms (90%) of peptidases derived from catalysis and an osmotin protein (5%). Animals receiving co-administration of LP-PII-IAA presented a significant decrease in mortality, absence of diarrhea, histological preservation, and normalization of intestinal functions. RESULTS: Clinical homeostasis was accompanied by a reduction in MPO activity and declined levels of IL-1ß, IL-6 and KC, while the IL-10 level increased in LP-PII-IAA-treated animals. COX-2 and NF-kB immunostaining was reduced and the levels of oxidative markers (GSH, MDA) were normalized in animals that received LP-PII-IAA. CONCLUSION: We suggest that peptidases from the latex of Calotropis procera were instrumental in the suppression of the adverse clinical and physiological effects of irinotecan.


Assuntos
Calotropis , Cisteína Proteases , Animais , Calotropis/química , Ciclo-Oxigenase 2 , Interleucina-10 , Interleucina-6 , Iodoacetamida , Irinotecano/farmacologia , Látex/química , Látex/farmacologia , NF-kappa B , Proteínas de Plantas/farmacologia , Proteínas de Plantas/uso terapêutico
13.
Angew Chem Int Ed Engl ; 61(30): e202203684, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35506673

RESUMO

Protein persulfides (R-S-SH) have emerged as a common post-translational modification. Detection and quantitation of protein persulfides requires trapping with alkylating agents. Here we show that alkylating agents differ dramatically in their ability to conserve the persulfide's sulfur-sulfur bond for subsequent detection by mass spectrometry. The two alkylating agents most commonly used in cell biology and biochemistry, N-ethylmaleimide and iodoacetamide, are found to be unsuitable for the purpose of conserving persulfides under biologically relevant conditions. The resulting persulfide adducts (R-S-S-Alk) rapidly convert into the corresponding thioethers (R-S-Alk) by donating sulfur to ambient nucleophilic acceptors. In contrast, certain other alkylating agents, in particular monobromobimane and N-t-butyl-iodoacetamide, generate stable alkylated persulfides. We propose that the nature of the alkylating agent determines the ability of the disulfide bond (R-S-S-Alk) to tautomerize into the thiosulfoxide (R-(S=S)-Alk), and/or the ability of nucleophiles to remove the sulfane sulfur atom from the thiosulfoxide.


Assuntos
Alquilantes , Sulfetos , Compostos Bicíclicos com Pontes , Iodoacetamida , Receptores Proteína Tirosina Quinases , Sulfetos/química , Enxofre/química
14.
Methods Mol Biol ; 2442: 75-87, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320520

RESUMO

Galectins can display unique sensitivity to oxidative changes that result in significant conformational alterations that prevent carbohydrate recognition. While a variety of approaches can be utilized to prevent galectin oxidation, several of these require inclusion of reducing agents that not only prevent galectins from undergoing oxidative inactivation but can also interfere with normal redox potentials required for fundamental cellular processes. To overcome the limitations associated with placing cells in an artificial reducing environment, cysteine residues on galectins can be directly alkylated with iodoacetamide to form a stable thioether adduct that is resistant to further modification. Iodoacetamide alkylated galectin remains stable over prolonged periods of time and retains the carbohydrate binding and biological activities of the protein. As a result, this approach allows examination of the biological roles of a stabilized form of galectin-1 without introducing the confounding variables that can occur when typical soluble reducing agents are employed.


Assuntos
Galectina 1 , Galectinas , Alquilação , Galectina 1/química , Galectina 1/metabolismo , Galectinas/metabolismo , Iodoacetamida , Espectrometria de Massas
15.
Chemosphere ; 286(Pt 3): 131816, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34418658

RESUMO

The effect of SiO2-layer thickness in SiO2-coated nano zero-valent iron (nZVI) particles on the reactivity characteristics of iodoacetamide (IAcAm) degradation was evaluated. SiO2-layer thicknesses ranging from 3.6 to 27.3 nm were obtained through varying tetraethyl orthosilicate dosages of 0.001-1 M. The crystallinity, surface chemical composition, and physicochemical properties were evaluated for their effects on synergetic degradation mechanisms, dehalogenation, hydrolysis, and adsorption. At a thickness of 3.6 nm, the SiO2 layer offered the highest observed pseudo-first-order rate (kobs) and higher rates of IAcAm degradation were maintained under pH fluctuations (pH 5-7) and aerobic conditions compared to pristine nZVI. At this SiO2-layer thickness (3.6 nm), the rate of iron oxide-layer formation was reduced and the migration of reactive iron species (Fe0 and Fe2+) for the dehalogenation and hydrolysis reactions was enabled. In a single-solute solution, IAcAm elimination was greater than bromoacetamide and chloroacetamide elimination due to the weak ionic I-C bond. In mixed solute conditions, the hydrophobicity of chloroacetamide played a more significant role in competitive degradation through greater adsorption. The proportion of dehalogenation relative to hydrolysis during IAcAm degradation by pristine nZVI and SiO2-coated nZVI was approximately 0.6:0.4. Iodoacetic acid and acetic acid were detected as intermediates in the degradation pathway of IAcAm by pristine nZVI. In contrast, the SiO2 layer on nZVI can accelerate the transformation of IAcAm to acetamide and iodoacetic acid. The electrolyte background of tap water exhibited a slight inhibitory effect on the degradation of IAcAm for both nZVI and SiO2-coated nZVI.


Assuntos
Ferro , Poluentes Químicos da Água , Adsorção , Hidrólise , Iodoacetamida , Dióxido de Silício , Poluentes Químicos da Água/análise
16.
Anal Biochem ; 619: 114137, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582115

RESUMO

Several common reagents for the alkylation of cysteine residues of model intact proteins were evaluated for reaction speed, yield of alkylated product and degree of over-alkylation using an online LC-MS platform. The efficiency of the alkylation reaction is found to be dependent on the (1) reagent, (2) peptide/protein, (3) reagent concentration and (4) reaction time. At high reagent concentrations, iodoacetic acid was found to produce significant levels of over-alkylation products wherein methionine residues become modified. For optimal performance of the alkylation reaction, we found the use of a cocktail of chloroacetamide, bromoacetamide and iodoacetamide worked best. The alkylating efficiency of each haloacetamide is a balance between the characteristics of the halogen leaving group and the steric hindrance of the alkylation site on the peptide or protein. A key aspect of using a cocktail of haloacetamides is that they all produce the same modification (+57.0209 Da) to the cysteine residues of the protein while the alkylation efficiency of each site may differ for each of the three reagents. Over-alkylation effects appear to be lower with the cocktail due to a lower concentration of each reagent. The haloacetamide cocktail could be useful when considering complex mixtures of proteins.


Assuntos
Acetamidas/química , Cisteína/química , Iodoacetamida/química , Proteínas/química , Alquilação , Cromatografia Líquida , Espectrometria de Massas em Tandem
17.
Proteins ; 89(6): 708-720, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33550642

RESUMO

Trichocyte keratin intermediate filament proteins (keratins) and keratin associated proteins (KAPs) differ from their epithelial equivalents by having significantly more cysteine residues. Interactions between these cysteine residues within a mammalian fiber, and the putative regular organization of interactions are likely important for defining fiber mechanical properties, and thus biological functionality of hairs. Here we extend a previous study of cysteine accessibility under different levels of exposure to reducing compounds to detect a greater resolution of statistically non-random interactions between individual residues from keratins and KAPs. We found that most of the cysteines with this non-random accessibility in the KAPs were close to either the N- or C- terminal domains of these proteins. The most accessible non-random cysteines in keratins were present in the head or tail domains, indicating the likely function of cysteine residues in these regions is in readily forming intermolecular bonds with KAPs. Some of the less accessible non-random cysteines in keratins were discovered either close to or within the rod region in positions previously identified in human epithelial keratins as involved in crosslinking between the heterodimers of the tetramer. Our present study therefore provides a deeper understanding of the accessibility of disulfides in both keratins and KAPs and thus proves that there is some specificity to the disulfide bond interactions leading to these inter- and intra-molecular bonds stabilizing the fiber structure. Furthermore, these suggest potential sites of interaction between keratins and KAPs as well as keratin-keratin interactions in the trichocyte intermediate filament.


Assuntos
Cisteína/química , Dissulfetos/química , Queratinas Específicas do Cabelo/química , Mapeamento de Peptídeos/métodos , Fibra de Lã/análise , Acrilamida/química , Alquilação , Sequência de Aminoácidos , Animais , Cromatografia Líquida , Humanos , Iodoacetamida/química , Ácido Iodoacético/química , Queratinas Específicas do Cabelo/classificação , Isoformas de Proteínas/química , Isoformas de Proteínas/classificação , Multimerização Proteica , Carneiro Doméstico , Espectrometria de Massas em Tandem , Lã/química
18.
Biochem J ; 478(3): 619-632, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33427868

RESUMO

Sulfur-containing amino acid residues function in antioxidative responses, which can be induced by the reactive oxygen species generated by excessive copper and hydrogen peroxide. In all Na+/K+, Ca2+, and H+ pumping P-type ATPases, a cysteine residue is present two residues upstream of the essential aspartate residue, which is obligatorily phosphorylated in each catalytic cycle. Despite its conservation, the function of this cysteine residue was hitherto unknown. In this study, we analyzed the function of the corresponding cysteine residue (Cys-327) in the autoinhibited plasma membrane H+-ATPase isoform 2 (AHA2) from Arabidopsis thaliana by mutagenesis and heterologous expression in a yeast host. Enzyme kinetics of alanine, serine, and leucine substitutions were identical with those of the wild-type pump but the sensitivity of the mutant pumps was increased towards copper and hydrogen peroxide. Peptide identification and sequencing by mass spectrometry demonstrated that Cys-327 was prone to oxidation. These data suggest that Cys-327 functions as a protective residue in the plasma membrane H+-ATPase, and possibly in other P-type ATPases as well.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Cisteína/química , ATPases Translocadoras de Prótons/química , Alquilação , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Arabidopsis/antagonistas & inibidores , Sequência Conservada , Cobre/metabolismo , Peróxido de Hidrogênio/metabolismo , Iodoacetamida/farmacologia , Cinética , Microssomos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Domínios Proteicos , ATPases Translocadoras de Prótons/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
19.
Artigo em Inglês | MEDLINE | ID: mdl-33429128

RESUMO

A novel analytical method was developed for the quantification of glutathione hydropersulfide (G-SSH) in biological samples by high-performance liquid chromatography (HPLC) with post-column derivatization. G-SSH was treated with iodoacetamide as an alkylating agent for 5 min at 37 °C, and the resultant acetamide-labeled G-SSH (G-SS-acetamide) was subjected to HPLC. After separation on a reversed-phase column, G-SS-acetamide was quantified by detection using a post-column reaction with orthophthalaldehyde under alkaline conditions. The standard G-SS-acetamide was synthesized through the S-S exchange reaction between oxidized glutathione and 2-mercaptoacetamide. It should be noted that some types of alkylating agents, including N-ethylmaleimide and monobromobimane, cleave the polysulfide chains of polysulfides that consist of glutathione, resulting in the production of alkylated G-SSHs. We confirmed that iodoacetamide did not enhance the cleavage of acetamide-labeled glutathione trihydropersulfide (G-SSS-acetamide). The lowest quantification limit was estimated to be 25 nM for G-SS-acetamide. This method can be useful for studying the dynamics of sulfane sulfur in glutathione-containing matrices.


Assuntos
Alquilantes/química , Cromatografia Líquida de Alta Pressão/métodos , Dissulfetos , Glutationa/análogos & derivados , Iodoacetamida/química , Linhagem Celular Tumoral , Dissulfetos/análise , Dissulfetos/química , Dissulfetos/metabolismo , Glutationa/análise , Glutationa/química , Glutationa/metabolismo , Humanos , o-Ftalaldeído/química
20.
Chembiochem ; 22(10): 1841-1851, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33442901

RESUMO

Chemoproteomics has enabled the rapid and proteome-wide discovery of functional, redox-sensitive, and ligandable cysteine residues. Despite widespread adoption and considerable advances in both sample-preparation workflows and MS instrumentation, chemoproteomics experiments still typically only identify a small fraction of all cysteines encoded by the human genome. Here, we develop an optimized sample-preparation workflow that combines enhanced peptide labeling with single-pot, solid-phase-enhanced sample-preparation (SP3) to improve the recovery of biotinylated peptides, even from small sample sizes. By combining this improved workflow with on-line high-field asymmetric waveform ion mobility spectrometry (FAIMS) separation of labeled peptides, we achieve unprecedented coverage of >14000 unique cysteines in a single-shot 70 min experiment. Showcasing the wide utility of the SP3-FAIMS chemoproteomic method, we find that it is also compatible with competitive small-molecule screening by isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP). In aggregate, our analysis of 18 samples from seven cell lines identified 34225 unique cysteines using only ∼28 h of instrument time. The comprehensive spectral library and improved coverage provided by the SP3-FAIMS chemoproteomics method will provide the technical foundation for future studies aimed at deciphering the functions and druggability of the human cysteineome.


Assuntos
Cisteína/química , Peptídeos/química , Proteômica/métodos , Biotina/química , Reação de Cicloadição , Células HEK293 , Humanos , Iodoacetamida/química , Espectrometria de Mobilidade Iônica/métodos , Peptídeos/análise , Técnicas de Síntese em Fase Sólida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...